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Institute of Theoretical Physics, S-412 96 Goteborg, Sweden 

Received 25 March 1988 

Abstract. The central charge for the integrable higher-spin X X Z  model is derived, exploiting 
the exact Bethe ansatz solution by Babujian and Tsvelick. For integer values of U, where 
y = ~ / v  is the anisotropy parameter ( O i y < ~ / 2 S ) ,  we find c=3S/(S+I) ,  with S the 
magnitude of the spin. Hence, contrary to expectation, the U(  ])-invariant critical point 
of the theory does not renormalise onto a free massless scalar field when S > f. 

The hypothesis that fluctuations at the critical point are not only scale invariant, but 
also conformally invariant, has led to dramatic progress in the theory of 2~ critical 
phenomena (Cardy 1987b). By exploiting the constraints imposed by conformal 
invariance (Belavin et a1 1984), possible classes of critical behaviour can coarsely be 
indexed by a real number c, the conformal anomaly or central charge. In fact, by 
adding the requirements of reflection positivity of the transfer matrix (unitarity) 
(Friedan et al 1984), and modular invariance of the partition function (Cardy 1986), 
a complete catalogue of all universality classes with 0 S c < 1 can be constructed (Capelli 
et a1 1987). 

To place restrictions on theories with c 2 1, additional symmetries have to be 
invoked. As pointed out by Affleck (1985), for a theory with a continuous internal 
symmetry group G ,  the symmetry at the critical point gets enlarged to GOG, corre- 
sponding to two conserved chiral currents J+ and J- of the underlying conformal field 
theory. In the case of U(1), the most general current algebra consistent with Lorentz 
invariance (rotation invariance of the statistical system) is given by the Schwinger 
commutators 

where xi  = xo k x ,  . These follow from representing the chiral currents in terms of a 
free massless scalar field 4, 

J+ = -(4T)-'/2a+4 ( 2 a )  

J-  = (4T)-%-4. (26) 

Equations (1 a )  and (1 b) imply that spacetime translations of J+ and J- are generated 
by the stress tensor with components 

T'(x,) = r J * ( x * ) J + ( x * ) +  constant. (3) 
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It follows that the full stress tensor can differ from T, only by terms which commute 
with the currents. If no hidden symmetries are present, i.e. all charges of the theory 
are built from J+ and J - ,  dimensional analysis forces the additional terms to have the 
form J+J+ and J L -  respectively, leading to a trivial renormalisation of the stress tensor. 
Hence, barring hidden symmetries, any U( l )  critical point can be described by a free 
massless scalar, with central charge c = 1. 

It is the purpose of this letter to point out the existence of a class of U( 1) invariant 
models with c >  1. These are the higher-spin generalisations of the well known X X Z  
model and were first constructed and studied by Sogo (1984). The integrability of the 
theories generates an infinite-dimensional Yang-Baxter algebra (Faddeev 1984), coding 
the hidden symmetry that apparently drives the central charge away from its expected 
value. This behaviour suggests a role for the Yang-Baxter algebra in the classification 
of critical phenomena. 

The models can be defined by the Hamiltonian 
N 

H = J  s:s:+,+s’,s’,+, +cos(2sy)s’,sL,+,+P,,(s~s:+,, sy,s:+,, s:s:+,) (4) 
n = l  

where PZs is a polynomial of degree 2s containing the higher-order terms (S being 
the magnitude of the spin) constructed from the vertex model underlying the spin 
problem (Sogo et al 1983, Babujian and Tsvelick 1986). S:, S’, and SL, are the 
components of the spin operator at site n, while J is some overall energy scale ( J  > 0), 
and y is an anisotropy parameter confined to 0 < y < 712s. 

As shown rigorously by Babujian and Tsvelick (1986), the Hamiltonian is Bethe 
ansatz solvable when y = r / v ,  with v an integer >2S. In particular, in the low- 
temperature limit the free energy per site can be obtained (Babujian and Tsvelick 1986) 
and to O ( T 2 )  one finds 

1 s T 2  f =  constant -- - 
J S + 1  

By matching ( 5 )  to the general expression for the free energy (per volume) of a 
(1 + 1)-dimensional conformal theory (Affleck 1986a, Blote et a1 1986) 

f =  constant -brcT2 (6) 
the central charge can thus be extracted. However, (6) applies to a relativistic theory 
of massless particles in units where the velocity of light is equal to unity. The ‘effective 
velocity’ for the collective excitations in the spin model must therefore be renormalised 
to unity before a proper matching can be done. As discussed by von Gehlen et a1 
(1986), this procedure also guarantees that the equations of motion are conformally 
invariant. 

To identify the effective velocity, the exact dispersion relation for the excitations 
has to be determined. Constructing the low-lying states from the Bethe ansatz equations 
in Babujian and Tsvelick (1986), we find a spectrum of solitons and antisolitons carrying 
spin i, and with energy-momentum relation (Johannesson 1988): 

E ( k )  = 4 r J  sin k O s k < r .  (7) 
Up to a multiplicative factor, this has the same form as the dispersion relation 

derived by Sogo (1984) from a differently constructed vertex model defining the 
generalised X X Z  problem. Reading off from (7), the effective velocity in the low-energy 
limit is seen to be equal to )TJ. As follows from dimensional analysis, renormalising 
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this velocity to unity in (5) means multiplying by ~ T J .  The temperature term then 
becomes f . r r [ S / ( S +  l)]  T2 and comparison with (7) yields 

3s 
S + l ’  

c = -  

This is the same set of c numbers as predicted by Affleck (1986b) for the isotropic 
X X X  model from a mapping onto the SU(2) Wess-Zumino-Witten model (Knizhnik 
and Zamolodchikov 1984), and verified in Johannesson (1988) using exact finite-size 
scaling. Curiously, the explicit breaking of SU(2) down to U( l), induced by choosing 
y # 0 in (4), leaves the central charge untouched, provided y is selected from the discrete 
set y =  T / u ,  U E  Z. 

Kirillov and Reshetikin (1987a, b) have analysed the model in (4) for arbitrary 
values of the anisotropy parameter in the interval 0 < y < .rr/2S. Now the free energy 
will in general get contributions from collective excitations with different effective 
velocities, i.e. the spectrum decomposes into a collection of distinct Fermi liquids. 
This corresponds to an unphysical field theory with several distinct ‘velocities of light’ 
for which conformal invariance makes no prediction. However, for certain privileged 
choices of y only a single Fermi liquid is present. Unfortunately, due to the implicit 
form of the solution, we have not been able to disentangle the physically relevant 
quantities except for the case above, already launched by Babujian and Tsvelick (1986). 

Of obvious interest is the calculation of the anomalous dimensions of the theory. 
As known since the pioneering work by Cardy (1984), these can be accessed through 
a study of the finite-size corrections to the excitation spectrum. For the present model, 
this will require some rather cumbersome analysis, possibly along the lines of de Vega 
and Woynarovich (1985). Taking the solution of the well known spin-f X X Z  model 
as a guide, where the anomalous dimension of the S‘ operator is given by 77‘ = f 
x (1 - y /  T)-’ (Luther and Peschel1975), it is tempting to conjecture that the higher-spin 
generalisations will also have critical exponents varying with the anisotropy. If so, the 
low-energy limit could provide an example of a conformal theory with a ‘conspiring’ 
operator product expansion. As recently shown by Cardy (1987a), a fixed line respon- 
sible for continuously varying exponents can arise in a theory with c # 1 only if the 
coefficients in the operator product expansion ‘conspire’ to produce precisely the right 
scaling form for the marginal operator. The necessary fine tuning of the OPE coefficients 
could naturally arise if hidden symmetries are present, again hinting at a possible role 
for the Yang-Baxter algebra in influencing the critical behaviour. One should note, 
however, that it is not clear in what sense the exponents would here be continuously 
varying, considering that a single Fermi liquid is present only for a discrete set of 
anisotropies. 

To conclude, it is certainly desirable to advance the understanding of this intriguing 
model. 

I wish to thank D Haldane for several very useful discussions. I am also indebted to 
A Luther for discussions and hospitality at NORDITA where part of this work was 
done. Support from the Swedish Natural Science Research Council is acknowledged. 
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